Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage

نویسندگان

  • Y Tong
  • H Ying
  • R Liu
  • L Li
  • J Bergholz
  • Z-X Xiao
چکیده

Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development. Cell Death and Disease (2015) 6, e1640; doi:10.1038/cddis.2015.3; published online 12 February 2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proline Isomerase Pin1 is a critical Regulator for Retinoblastoma Protein Phosphorylation in Control of Cell Cycle and S-phase Check-point Upon DNA Damage

Protein phosphorylation represents an universal regulatory mechanism in cellular signalling. Pin1-catalyzed isomerization of phospho-protein plays a pivotal role in this regulatory network. Through binding to specific phosphorylated Ser/Thr-Pro bonds, Pin1 induces conformational change of its targets, therefore affecting many diverse cellular events. Reports from us and others demonstrate that ...

متن کامل

Juglone inactivates cysteine-rich proteins required for progression through mitosis.

The parvulin peptidyl-prolyl isomerase Pin1 catalyzes cis-trans isomerization of p(S/T)-P bonds and might alter conformation and function of client proteins. Since the trans conformation of p(S/T)-P bonds is preferred by protein phosphatase 2A (PP2A), Pin1 may facilitate PP2A-mediated dephosphorylation. Juglone irreversibly inhibits parvulins and is often used to study the function of Pin1 in v...

متن کامل

Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe.

Pin1/Ess1p is a highly conserved WW domain-containing peptidyl-prolyl isomerase (PPIase); its WW domain binds specifically to phospho-Ser/Thr-Pro sequences and its catalytic domain isomerizes phospho-Ser/Thr-Pro bonds. Pin1 PPIase activity can alter protein conformation in a phosphorylation-dependent manner and/or promote protein dephosphorylation. Human Pin1 interacts with mitotic phosphoprote...

متن کامل

A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system

Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...

متن کامل

PP2A-Mediated Dephosphorylation of p107 Plays a Critical Role in Chondrocyte Cell Cycle Arrest by FGF

FGF signaling inhibits chondrocyte proliferation, a cell type-specific response that is the basis for several genetic skeletal disorders caused by activating FGFR mutations. This phenomenon requires the function of the p107 and p130 members of the Rb protein family, and p107 dephosphorylation is one of the earliest distinguishing events in FGF-induced growth arrest. To determine whether p107 de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015